Highest Weight Modules for Hermitian Symmetric Pairs of Exceptional Type

نویسندگان

  • THOMAS J. ENRIGHT
  • BRAD SHELTON
  • Jonathan M. Rosenberg
چکیده

We analyze the categories of highest weight modules with a semiregular generalized infinitesimal character for the two exceptional Hermitian symmetric cases. These categories are completely described, and, as a consequence, we see that the combinatorial description of the general (regular integral) categories of highest weight modules previously given in the classical cases holds also in the exceptional cases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiplicity-free theorems of the Restrictions of Unitary Highest Weight Modules with respect to Reductive Symmetric Pairs

The complex analytic methods have found a wide range of applications in the study of multiplicity-free representations. This article discusses, in particular, its applications to the question of restricting highest weight modules with respect to reductive symmetric pairs. We present a number of multiplicity-free branching theorems that include the multiplicity-free property of some of known res...

متن کامل

Kostant Homology Formulas for Oscillator Modules of Lie Superalgebras

We provide a systematic approach to obtain formulas for characters and Kostant u-homology groups of the oscillator modules of the finite dimensional general linear and ortho-symplectic superalgebras, via Howe dualities for infinite dimensional Lie algebras. Specializing these Lie superalgebras to Lie algebras, we recover, in a new way, formulas for Kostant homology groups of unitarizable highes...

متن کامل

A Pieri Rule for Hermitian Symmetric Pairs

Let (G, K) be a Hermitian symmetric pair and let g and k denote the corresponding complexified Lie algebras. Let g = k⊕ p+⊕ p− be the usual decomposition of g as a k-module. K acts on the symmetric algebra S(p−). We determine the K-structure of all K-stable ideals of the algebra. Our results resemble the Pieri Rule for Young diagrams. The result implies a branching rule for a class of finite di...

متن کامل

A Pieri Rule for Hermitian Symmetric Pairs I

Let (G,K) be a Hermitian symmetric pair and let g and k denote the corresponding complexified Lie algebras. Let g = k⊕p+⊕p− be the usual decomposition of g as a k-module. K acts on the symmetric algebra S(p−). We determine the K-structure of all K-stable ideals of the algebra. Our results resemble the Pieri rule for Young diagrams. The result implies a branching rule for a class of finite dimen...

متن کامل

Visible actions on symmetric spaces

A visible action on a complex manifold is a holomorphic action that admits a J -transversal totally real submanifold S. It is said to be strongly visible if there exists an orbit-preserving anti-holomorphic diffeomorphism σ such that σ|S = id. In this paper, we prove that for any Hermitian symmetric space D = G/K the action of any symmetric subgroup H is strongly visible. The proof is carried o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010